

Unique Core Products Africa

Innovative Core Storage Solutions

UCP Africa

Avoid bottlenecks in core logging/splitting/sampling procedures

- Avoid high cost of transport/storage of core trays in waiting

- Increased ease of manual handling
- Protects the asset (core)
- Global health and safety standards

UCP Africa - core trays

- Health and safety
 - NO sharp edges
 - Safe handling
 - Limited maximum weight
- Efficient and effective
 - Core visibility 45 48% circumference
 - Core tray photography friendly
 - Easy core handling
 - Easily moved around
 - No core roll
- Materials
- Cost effective

ScanIT – The Hardware

- UCP Africa materials
 - Zincalume® coated steel body
 - Polypropylene plastic ends with UV stabiliser

- Cost effective
 - Pre-fabricated assembled on site
 - Low transport costs

UCP Africa – core trays

UCP Africa – CDM & core tray lids

Core depth markers (CDM)

- included in cartons with paint markers
- Optical Character Recognition (OCR) friendly
- retains paint

Core tray lids

- Durable and sleek
- Slide or unclick
- Locks without impeding stackability

UCP Africa – logging tables

Core logging tables

- Easy to transport and assemble
- Adjustable dimensions
- Extruded aluminium profile

- Ergonomic user can sit or stand
- Plastic casters mounted on a roller bed
- Core tray photography friendly

ScanIT – hardware

FIELD UNIT comprises an iPhone mounted on a camera cradle designed to slide along a UCP core tray.

The **ALIGNMENT TOOLS** are used to rotate the core towards the camera, ensuring that the orientation line appears in the center of the channel.

The tilting roller bed **WORK BENCH** with the attached camera accessory provides an ergonomic option allowing the operator to be seated when logging or photographing the core.

ScanIT – core photography

This method of photography produces an undistorted high resolution image of the core tray

ScanIT

Core logging software

ScanIT -

ScanIT – depth referencing

- Best logging practices
- Core depth markers
- Rulers
- Forced breaks

- Natural gaps
- Core loss
- Core gain
- Solid core recovery

ScanIT – features

- Lithologies, planes, lineations
- Customised RGB colours
- Import project specific logging dictionaries
- Features shortcut keys

ScanIT – logging

- Best fit plane
- Dropdown parameters
- Instant editing

ScanIT – live logging

- Live stereonet
- Live orthographic projection
- Live validation

Immediate data QAQC

ScanIT – stereonet

ScanIT – composite log

ScanIT – 3D orthographic

ScanIT – composite log

ScanIT – logging dictionary

ScanIT allows the user to customize their project specific logging codes.

- Each project is different therefore by having the logging dictionary customizable to suite each operation.
- Structures and Lithologies can have different codes.
- ScanIT allows user to view logging descriptions while logging instead of translating codes into words.
- Codes are populated into the excel export log and are easily imported into any geodatabase or modelling program.

ScanIT export – geological log

itite. Solid or competant. Yellow Olivine Olkocrysts 0.5cm constitute 10% of chromite. Aphanitic
lite plagioclase, 98% dark brown orthopyroxenes with 0.1mm grain size. Anhedral grain form, round
lite plagioclase, 98% dark brown orthopyroxenes with 0.1mm grain size. Anhedral grain form, round
lated chromitite.
litite. Yellow Olivine Olkocrysts of 1cm consitute 10% of chromite.
lite plagioclase, 98% dark brown orthopyroxenes with 0.1mm grain size. Anhedral grain form, round
litite. Yellow Olivine Olkocrysts of 1cm consitute 10% of chromite.
lite plagioclase, 98% dark brown orthopyroxenes with 0.1mm grain size. Anhedral grain form, round
litite. Yellow Olivine Olkocrysts of 1cm consitute 10% of chromite.
lite plagioclase, 98% dark brown orthopyroxenes with 0.1mm grain size. Anhedral grain form, round
litite. Yellow Olivine Olkocrysts of 1cm consitute 10% of chromite.

	310.10	4145	****			a little i fellow offerie of works of a fell constitute 10% of children.
318.16	318.32	0.16	0.10		ORTHO-PYROXENITE	Ortho-Pyroxinite; 2% white plagioclase, 98% dark brown orthopyroxenes with 0.1mm grain size. Anhedral grain form, round
318.32	318.34	0.02	0.01		CHROMITITE	Black fine grained chromitite .Yellow Olivine Oikocrysts of 1cm consitute 10% of chromite.
318.34	319.29	0.95	0.61		ORTHO-PYROXENITE	Ortho-Pyroxinite; 2% white plagioclase, 98% dark brown orthopyroxenes with 0.1mm grain size. Anhedral grain form, round
319.29	319.4	0.11	0.07	Г	CHROMITITE	Black fine grained chromitite .Yellow Olivine Olkocrysts of 1cm consitute 10% of chromite.
319.4	347.8	28.4	18.37	Γ	ORTHO-PYROXENITE	Ortho-Pyroxinite; 2% white plagioclase, 98% dark brown orthopyroxenes with 0.1mm grain size. Anhedral grain form, round
347.8	347.85	0.05	0.03	Г	PEGMATITE VEIN	Pegmatite Vein
347.85	352.69	4.84	3.13	Г	ORTHO-PYROXENITE	Ortho-Pyroxinite; 2% white plagioclase, 98% dark brown orthopyroxenes with 0.1mm grain size. Anhedral grain form, round
352.69	352.84	0.15	0.10	Г	PEGMATITE VEIN	Pegmatite Vein
352.84	366.64	13.8	8.93	Г	ORTHO-PYROXENITE	Ortho-Pyroxinite; 2% white plagioclase, 98% dark brown orthopyroxenes with 0.1mm grain size. Anhedral grain form, round
366.64	366.93	0.29	0.19	Г	LG6A	Black fine grained Chromitite. Solid or competant. Yellow Olivine Olkocrysts 0.5cm constitute 20% of chromite. Aphanitic
366.93	367.61	0.68	0.44	Γ	ORTHO-PYROXENITE	Ortho-Pyroxinite; 2% white plagioclase, 98% dark brown orthopyroxenes with 0.1mm grain size. Anhedral grain form, round
367.61	368.03	0.42	0.27		LG6	Black fine grained Chromitite. Solid or competant. Yellow Olivine Oikocrysts 0.5cm constitute 30% in modal abundance.
368.03	368.68	0.65	0.42	Г	PYROXENITE	Pyroxenite with disseminated chromitite.
368.68	402	33.32	21.56		ORTHO-PYROXENITE	Ortho-Pyroxinite; 2% white piagloclase, 98% dark brown orthopyroxenes with 0.1mm grain size. Anhedral grain form, round
	-			-		

ScanIT export – survey data

1	Drill Hole No.	CollarEasting	CollarNorthing	CollarElevation	Final Length	Survey No	Denth [m]	Inclination	Azimuth	Northing	Fasting	Flevation [m]		
2	0	0	0	0	400		0	-69,90	53	0,00	0,00	0,00		
3					400	2	24	-69,90	53	5,10	6,65	-22,49		
4	7					3	30	-70,00	53	6,34	8,29	-28,13		
5						4	36	-69,90	53	7,58	9,93	-33,76		
6						5	42	-70,00	52	8,84	11,56	-39,40		
7	_					6	48	-69,90	52	10,11	13,17	-45,04		
8						7	54	-70,00	52	11,39	14,79	-50,67		
9						8	60	-70,10	52	12,65	16,40	-56,31		
10						9	66	-69,90	52	13,92	18,01	-61,95		
11						10	72	-69,80	52	15,19	19,64	-67,58		
12						11	78	-69,70	51	16,49	21,26			
13					(12	84	-69,80	52	17,78	22,89	-78,84		
14						13	90	-69,90	53	19,04	24,53	-84,47		
15						14	96	-70,00	53	20,29	26,16	-90,11		
16						15	102	-70,10	53	21,52	27,80	-95,75		
17						16	108	-70,10	53	22,74	29,44	-101,39		
18						17	114	-70,30	53	23,96	31,07	-107,04		
19						18	120	-70,30	54	25,16	32,69	-112,69		
20						19	126	-70,40	54	26,34	34,32	-118,34		
21						20	132	-70,60	54	27,52	35,94	-123,99		
22						21	138	-70,70	54	28,69	37,55	-129,65		
23						22	144	-70,90	55	29,84	39,16	-135,32		
24						23	150	-71.00	55	30.96	40.76			
	4	Borehole Setup	Survey Data	Survey Data Input Template		geological borehole log		Structural Logging Dictio (+) : [4]						

ScanIT export – structural log

											omque	core Products Arrica (711/210.
	COORDINATES			PLANAR STRUCTUR	LIN	EAR STRUCTURES							
DEPTH (m)	X	Y	z	Plane ID	Description	alpha (0)	Dip	Dip Direction Line		ior Plunge	Trend		
134.90	28700.83	-41677.00	993.74	LEUCONORITE	70% white plagioclase, 30% dark	73.14	16.16	63.90					
135.56	28700.84	-41677.00	993.08	Lu	Layering in un orientated core	70.62	19.12	0.12					
135.90	28700.84	-41677.00	992.74	J1	Joint Set !	27.96	61.36	81.95					
136.38	28700.85	-41677.00	992.26	PEGMATITE VEIN	Pegmatite Vein	48.99	41.71	242.77					
136.56	28700.85	-41676.99	992.08	LEUCONORITE	70% white plagioclase, 30% dark	65.74	24.95	254.34					
137.15	28700.85	-41676.99	991.49	Lo	layoring in orientated core	58.11	31.65	137.81					
138.09	28700.87	-41676.99	990.55	Lu	Layering in un orientated core	65.99	23.76	135.27					
138.71	28700.87	-41676.98	989.93	Lu	Layering in un orientated core	68.18	21.32	110.40			7		
139.08	28700.88	-41676.98	989.56	J1	Joint Set !	19.65	70.99	270.45			_		
139.92	28700.89	-41676.98	988.72	Lo	layoring in orientated core	64.42	24.86	60.43					
140.78	28700.90	-41676.97	987.86	Lu	Layering in un orientated core	71.39	17.96	37.16					
142.98	28700.92	-41676.96	985.66	Fault Zone	1	24.28	64.99	59.94					
144.06	28700.93	-41676.96	984.58	J1	Joint Set !	34.33	55.12	107.99					
144.96	28700.94	-41676.95	983.69	J2		5.51	85.13	215.88					
146.58	28700.96	-41676.94	982.06	J1	Joint Set!	60.49	28.84	38.76					
148.41	28700.99	-41676.93	980.23	J1	Joint Set!	51.93	37.54	112.73					
149.84	28701.00	-41676.92	978.80	Lu	Layering in un orientated core	66.82	23.41	315.57					
150.09	28701.01	-41676.92	978.55	Lu	Layering in un orientated core	63.36	26.86	316.05					
150.84	28701.02	-41676.92	977.80	Lu	Layering in un orientated core	70.79	19.45	313.69					
151.47	28701.02	-41676.91	977.18	J1	Joint Set!	51.08	39.33	183.41					
151.87	28701.03	-41676.91	976.77	J1	Joint Set!	53.38	37.07	185.68					
152.53	28701.04	-41676.91	976.11	J2		12.96	76.97	334.16					
154.40	28701.06	-41676.89	974.24	Lo	layoring in orientated core	78.07	12.08	317.21					
156.72	28701.09	-41676.88	971.92	Lu	Layering in un orientated core	55.69	34.34	328.65					
157.16	28701.09	-41676.87	971.49	Lu	Layering in un orientated core	66.89	23.35	312.81					
157.24	28701.09	-41676.87	971.41	Lu	Layering in un orientated core	57.32	32.89	315.41					
159.98	28701.13	-41676.85	968.66	Lu	Layering in un orientated core	76.17	14.14	302.42					
170.73	28701.25	-41676.76	957.92	Lo	layoring in orientated core	71.75	17.73	349.20					
171.04	28701.25	-41676.76	957.61	Lo	layoring in orientated core	68.47	21.16	338.65					
171.78	28701.26	-41676.75	956.86	Lo	layoring in orientated core	55.81	33.44	6.76					
172.45	28701.27	-41676.74	956.19	Lo	layoring in orientated core	65.03	24.06	25.36					
172.63	28701.27	-41676.74	956.02	Lo	layoring in orientated core	60.08	29.05	18.93					
175.56	28701.31	-41676.70	953.09	Lo	layoring in orientated core	64.61	24.73	356.31					
175.63	28701.31	-41676.70	953.01	Lo	layoring in orientated core	59.24	29.97	6.77					
176.60		-41676.69	952.04	Lo	layoring in orientated core	66.04	23.26	359.78					
179 26		.41676 67	050.20	10	Invaring in orientated core	62.22	27 20	242 70					
I № B	orehole S	etup !	Survey	Data Input Temp	late Geological Borehole	Log	Features	Structural da	ata Internal An	ales S	tructural D	Dip & Dip Direction	Geotech

ScanIT export – geotechnical data output

ScanIT automatically calculates the basic geotechnical parameters per 1, 2 or 3m intervals:

- COLLATED IMAGE illustrates the composite image broken down according to the interval size.
- . CORE LOSS refers to actual amount of core lost during drilling in cm or % per interval.
- RQD (Rock Quality Designation) is calculated using the Natural Breaks in the interval.
- DRILL BREAKS or ORIENTATION DICONTINUITES are calculated from no. of breaks per interval.
- CORE ORIENTATION is the amount of core that can be reliably orientated, measured as meters or percentage.

ScanIT – borehole statistics

